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Abstract

A geometrical ‘“WPV’ notation for crystallographic
point symmetry groups (PSG) in four-dimensional
space is proposed. This simple notation generalizes
the Hermann-Mauguin notation and makes it poss-
ible to retrieve the PSG elements easily. Tables
classifying all elements of each PSG for systems 1 to
28 are presented. For higher systems, from 29 up to
33 inclusive, the results of the work are not reported
owing to the space required, but they are at the
disposal of the reader upon request.

Introduction

The present article is the continuation of two previous
papers; we first defined the crystallographic point
symmetry operations (PSOs) as elements of crystallo-
graphic point symmetry groups (PSGs) in E*, E> and
E® (Weigel, Veysseyre, Phan, Effantin & Billiet, 1984),
then we gave an extensive description of the 384
elements of the crystallographic PSG for the
holohedry of the primitive hypercubic crystal system
in E* (Veysseyre, Weigel, Phan & Effantin, 1984). For
some PSGs in E* we proposed geometric symbols
which were generalizations of Hermann-Mauguin

0108-7673/87/030294-11$01.50

symbols but we did not give a listing of all PSOs of
these PSGs (Weigel, Phan & Veysseyre, 1984,
Veysseyre, Phan & Weigel, 1985).

By means of a completely different approach, Whit-
taker (1984) recently published a list of rather compli-
cated symbols for the 227 groups but did not propose
any list of PSOs. Furthermore his symbolism is far
from the Hermann-Mauguin notation except for
some polar groups.

In this paper we propose simple geometric symbols
for each of the 227 crystallographic PSGs of E*; then
we give the entire listing of all PSOs, elements of
each of 161 crystallographic PSGs among the total
of 227. It should be pointed out that for each PSG
of E* our geometric symbol is a generalization of a
Hermann-Mauguin symbol for physical space E* and
makes it possible to retrieve any symbol of any PSO,
an element of the PSG.

We recall that Wondratschek, Billow & Neubiiser
(1971) determined the number of crystallographic
PSGs of E*. There are 227 belonging to 33 crystallo-
graphic systems which in turn are grouped into 23
families, indicated by a Roman numeral. The 227
PSGs of E* are all subgroups of at least one of the
four following PSGs: 20-22; 30-13; 31-07 and 33-16:
here the first number characterizes the system (cf.
Table 1, fourth column), the second number the PSG

© 1987 International Union of Crystallography
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Table 1. Elements and notations of the 161 crystallographic PSGs of the families 1 to XX

The table is divided into subtables, one for each family; if necessary, one subtable is divided into two or three parts for each system belonging to this
family. For each crystal system heading, the system name is given and between parentheses the name given by Wondratschek, Billow & Neubiiser (1971).
Each family is characterized by a roman numeral (I to XXIII) and each system by an arabic numeral (1 to 28). For each PSG the first column gives its
number in the system, the second its order, the third some subgroups, the fourth its elements, which are not elements of the subgroups of the third column,
the fifth its WPV notation, the seventh its PSG™ when the PSG itself is a PSG™. In the sixth column the filled circle * indicates polar groups and the
symbol | indicates PSGs containing 1. In the listing of the elements of each PSG, the following abbreviations are employed:

O:x,p,x+y,x—y Vix—y,x=2y,2x—y W:zz+0z2—1 V:iz—t,z-21,2z—1
Arx,y,x+y O:x,y,x+y,x—y,x=2y,2x—y Azt z+t @:z,t,z+t,z—1,2-24,2z—1.
Class  Order Subgroups PSO WPV NOTATION PSG™

I 01 Hexaclinic*

01 1 1 1 . —

02 2 01 1, 1, ] —
I 02 Right hyperprism based on parallelepiped (xyz) [triclinic]*

01 2 1 m, m . 1

02 2 1 Tope 1 . 1

03 4 01-02 1, TLm i 1,
III 03 Di orthogonal parallelograms (xy), (zt) [diclinic]

o1 2 1 2, 2 . —

02 4 01 1, o 212 ] —
IV 04 Orthogonal parallelogram (xy) gle (zf) [ linic]

o1 4 1 m, m, 2,, m,m,2 . 2

2

02 4 1 m, 2, T, - . 2

03 4 1 2, | I - 2,1 2

04 8 01 1, 2, [ 212, m,m i 212
V 05 Di orthogonal rectangles (xy), (zt) KU-centred [orthogonal KU-centred]

o1 4 1 24002402, 2,2,2 . _

02 8 01 1, 242,02, (2,2,2)®1, i —

06 Di orthogonal rectangles (xy), (zt) [orthogonal]
’ - 222

01 8 1 mam,mo 2,22, T i . 2,2,2

02 8 1, om 2y Zer 2y Toyo Lo T (22,201m 2,2,2

03 16 01-02 1, 2020 224 mm212,mm |} (2,2,2)®1,
VI 07 orthogonal parallelogram (xy) square (zt) [tetragonal monoclinic]

01 4 1 2,430.2, 24 —

02 4 1 4x'2,, 4 . —

03 8 01-02 1, 2,, 214 i —

04 8 o1 m,,, Toyes Taye 24,m,1 24

05 8 02 Al . 41,1 4

06 8 02 4x mg 4, mm . 4

07 16 03-06 axl, g 214, mm i 214
VII 08 Orthogonal parailelogram (xy) hexagon (zr) R(2,3,4) d [hexagonal linic R(2, 3, 4)-centred]

o1 3 1 3% 3 . —

02 6 o1 1, 2,,63} 26 i —

03 6 o1 3xm, 3, . 3

04 6 o1 3xT,, 3,1 3

05 12 02-03 3x1,,4 26,m,1 i 26

09 Orth | parallelogram (xy) hexagon (zt) [hexagonal linic]

01 6 1 631,322, 6 . -

02 6 1 2,334,350, 213 —

03 12 01-02 1, 2,63 216 i —

04 12 01 6Xmg 6,mm ] 6

05 12 01 6x1,.9 6,1,1 6

06 12 02 3xm, 3xT,,4 213, m 213

07 24 03-04 6x Txy. 216, m,m i 216
VIII 10 Di diclinic squares (xy), (zt) [ditetragonal diclinic]*

01 4 11, 4l,4l,,470400 a4* i -
IX 11 Di diclinic hexagons (xy), (zt) [dihexagonal diclinic]*

01 3 1 3,30:35,35 33* —

02 6 o1 1, 61,615,616 66* i —
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Table 1 (cont.)
Class  Order Subgroups PSO WPV NOTATION PSG”
X 12 Orthogonal rectangle (xy) square (zf) KG-centred [tetragonal orthogonal KG-centred]
01 4 1 m 4212, 3 . 2
02 8 01 T, mazl 2, 213 i 212
03 8 01 m,,m, et i2,m . 2,2,2
04 8 01 200 1.1, 4,2,1 2,2,2
05 16 02-03 2. 1,0, 214,2,m i (2,2,2)®1,
13 Orthogonal rectangle (xy) square (zt) [tetragonal orthogonal]
- 4
o1 8 1 m, m 43t.430.2,, - - 4
m
=1 =1 1 2
02 8 1 m, m.43'.2,,4,,2,, T ; 24
03 8 1 2,452,020 2.0 2,00, 24,2,2 —
04 8 1 43,2,,4%2. 8 4,2,2 . —
05 16 01-02 1, m4zt,2,, m,m, 214 ] 214
422
06 16 01 4x 4x2 — == . 4,2,2
m- b m m m
- - 24
07 16 02 m,,. 2,020 2004 Ty Loy - 2,2 24,2,2
- 4
08 16 01 4x2,y axi g —,2,2 42,2
. m
09 16 04 1, 4x2 9,2, 4702, 214,2,2 i —
10 32 05 4x my 4%2,g,4%2 g 4x1, g mm214,mm | 214,2,2
X1 14 Orthogonal r gle (xy) hexagon (z1) R(2,3,4)-centred [hexagonal orthogonal R(2, 3, 4)-centred]
01 6 1 m63', 37" i, 3 . 3
02 6 1 m, m 31, 3% 3 . 3
03 6 1 3:,3%2,, 3,2 . -
- 26
04 12 01-02 i, 2,63 — i 2
m
05 12 03 1, 2,,65'.3%x2,¢ 26,2,2 i -
)
06 12 01 Ixm, 3x2yv 3,— . 3,2
m
07 12 01-03 3x1,, 3,21 3,2
08 12 02-03 3xm, 6,m2 . 3,2
09 12 02 3x2,y 3x1,,y 6,2,1 3,2
- 26
10 24 04-05 3xm, 3x1, =,2,2 \ 26,2,2
m
15 Orthogonal rectangle (xy) hexagon (z¢) [hexagonal orthogonal]
- 6
o1 12 1 m, m63', m.370,650.350.2,, Lzt - . 6
m
02 12 1 m,m, m 3%, m 3302 331,330,2 m,m213 213
03 12 1 m63',m6%,2, 35,330,2, 1..1,. 213 213
04 12 1 6%',351,2,,6x2,4 6,2,2 . —
05 12 1 2,,350.300.2,,,3%2,9.3%2,y 213,2 -
6 2 2
06 24 01 6xmq 6%2,. o -, . 6,2,2
mmm
07 24 02 3xm, 3x%2,4,3%2,, 3xT,,, m,m, 213, m 213,2
08 24 01-02 1, 2,,6%',m 67! i, m m2.L6 i 216
- 6
09 24 01-04 6x1, .o —,2,2 6,2,2
10 24 03-05 3xm, 3xT,,, 213,2,1 213,2
11 24 04-05 1, 2,,651.3%2,, 216,2,2 ] —
12 48 08 6xmq 6x2,,6%2,q 6x1, .o mm,216,mm | 216,2,2
XI1 16 Di monaclinic squares (xy), (zr) [ditetragonal monoclinic]
o 8 L 48550458550 2500 20 2y 2a g 44,2 i —
XIH1 17 Di monoclinic hexagons (xy), (zt) [dihexagonal monoclinic]
o1 6 1 3003080353780 200 2000 26 yi s 33%,2 —
02 12 01 1, 65,605,670 6722 200y 100 225y 200 2,66%,2 i —
XIV 18 Di orthogonal squares (xy), (zt) D(1,4)(2, 3)-centred [ditetragonal orthogonal D(1,4)(2, 3)-centred]
01 8 1, 4374302, 2, o “ A "
02 16 01 m,m, m, 45 Ty “4,m1 i “
03 16 11, anm . am 450,222, 414 i 2,2,2)®1,
04 16 01 202600 25 20 2xay ame oL 2,44,2 i —_
05 32 02-04 m,, m, 4%'m [ m, 44, m ] 2,44,2

xyzs Lxyt
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Class  Order Subgroups PSO WPV NOTATION PSG*
_ 19  Di orthogonal squares (xy), (zt) [ditetragonal orthogonal] ~
01 16 11, 212,045,452, 4x mq 47! 414 i 412
02 16 11, 43,45 ,4504%0,42502,,2, 45,2, 2, ~ 414 i -
03 32 02 4% mg, 4xmo4z! 4xig,, | 414, m,m i 414
04 32 01 m,,, 4 m,,  4%20,, 4% 25, [ 414,2,m i 214,2,2
05 32 02 16X 2 (4L4)A2 i —
06 64 03-05 4X mg 4><4:; mg 4x1, g m, m414, m,m 1) (414)A2
XV 20 Orthogonal square (xy) hexagon (zt) [hexagonal tetragonal]
o1 12 1 43, 3:,",4:‘3;‘ , 2,‘,,22103:],l . 413 -
21 4 P
02 12 1 2,,,3 2’1’4"’ 2;,; 2,3 o 455 6% 4 —
03 12 1 2,,330,2,,350 . 3x45 m, 413 213
04 24 03 3xm, 45,4535 3IxT,,. 413, m 413
05 24 01-02 1, 63,2,102,,63) 416 i -
06 24 01 4xmo 63! 4xig,, 413 413
07 24 01 12X25y 2,2,413 -
08 24 01 4% mq 4xmo3z! m, m, 4.3 413
*1 T T
[, 24 02 Ixm, 3)(4;’{"“ . . gxlxj‘ «_té,m,l 46
10 24 02 Myyy m63 ,m6% ,m, 35 [T o 1, m, 46 46
1t 24 02 3X2,4,3%2,4,3%2,, ¥ 46,2_,2 -
12 24 1 m, m, 2,352,350 m 33 m 33 3x45 my 3X2, Ly m, 2,413 213,2
13 24 03 m 63!, m651,3x2, .y Lezos Ly 443 243,2
14 24 03 i, 62',2,,2,,65,3x45 my B 316 i 216
15 43 05 6xmg 6x43img 6x1, .o 416, m,2 m ] 416
16 43 06 3xm, 3x45im,, 12X 2y IxT, 0 ui,; 2,2,443
17 43 04-08 12X25, m,m, 413, m 2,2,413
18 43 05-08 4xmo 6% 4x1g,, m; m, 416 i 416
19 48 05-07 12X24, 2,2,416 ] —
20 48 09-10 3%2,9,3%2,9,3%X2,, 4 _ 1,m46,m 46,2,2
21 48 12-14 m 63, m651,3x2, 4 .1, m2,4L6 i 216,2,2
22 96 15-18 24x25q m,m4L6,mm | 2,2,416
XVI 21 Di orthogonal hexagons (xy), (zt) G(2,3)-centred {dihexagonal orthogonal G(2, 3)-centred]
01 6 (I 3%),6{",',3_;{’6_::,3%y3:_,l,3,;l3;:‘, - 36 —
02 12 01 1, 63,61,,65,67'.65,351,63031,,2,, 36®1, i -
03 12 01 2yx'2x1*1’2y1+21’2x+)’f‘21+y 22+t 36,2,2 _ -
04 24 02-03 2x-,vrv 2x—y21+l'22x+y1’22x+yz+2112x+2yle (36, 2-2)®|4 [} -
22 Di orthogonal hexagons (xy), (2t) RR,-centred [di hexagonal orthogonal RR,-centred]
01 9 1 33,335,353 313 —
02 18 01 1, 2,,650.652,,65 6% (313)®1, i —
03 18 o1 Ixm, 3x35,m, 313, m 313
04 18 o1 3IX63) my Ix1,, 313 313
05 18 01 9IX2,, (313)A2 -
06 36 03-04 1, 2,,65,6502,,65 63 313, m i (313)@1,
07 36 02-05 9IX25y (313,2)®1, i —
08 36 03 3xmy, 3xmy35,9%2,, m3L3,m (313)A2
09 36 01 3xm, Ixmg6%!,3x3% m, 9% 20y Ix1g,, 313,2 (313)a2
10 36 04 Ixmg6E!,9%2,, IxTg,, 313 (313)a2
11 72 07-08 Ixmg 67!, 3x65) my 3xTg,,3%1, 9 (m 3.3, m)®1, | (343, 2)®1,
23 Di orthogonal hexagons (xyj, (zt) [dihexagonal orthogonal]
01 18 1 65,350 ,62,351,350,2,,2, 35,3503 613 -
02 36 01 1, 6502, 2,,631,65)2,,,35)2,,, 35631, 6563 616 i —
03 36 01 6xmo6%! 6x 1oy, 6.3 613
04 36 01 6xmq 6xmo3%! m, m,6L3 6.3
05 36 o1 18%25, (613)A2 —
06 36 01 Ixmy 3x6%) my,3x35) my 3xT,,y 613, m 613
07 72 02-04 6xmo 6%} 6x1,, 616, m, m i 616
08 72 02 36X209 (616)a2 i —
-2
09 72 03 3xmy 3IX3% my,3X6%) my, 18X 25, 3x1,,y 613,— (613)a2
m
10 72 04 3xm, 3x65m,,3X350m,, 1825, Ix1,,4 m, m,613,2 (613)A2
1 144 07 6xmg 6x6:; m.,6X3f;m.,36X20. 6x1, .o m, m, 616, m, m i (616)A2
XVII 24 Right hyperprism based on cube (yzt) KU-centred [cubic orthogonal KU-centred]
01 12 1 2,202,035 10 yas 2,3 . -
02 24 01 1, 2002500 200 2,381, i —
03 24 01 My My My my41’,', m14;', m,4;! _ ~ ~ 43,m . 2,3
04 24 01 m 4%l m 4%t m 4%} Topears Lasyar Layes 33,1 2,3 _
05 48 02-03 m4yl, m 4st, m 4%} Toprer Leoyars Laayaz 4,3, m®1, i 2,3)®1,
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Table 1 (cont.)
Class  Order Subgroups PSO WPV NOTATION PSG™
25 Right hyperprism based on cube (yzt) [cubic orthogonal]
- 2 .
01 24 1 mym,m 2,,2,,2,.350, ., [m6] [ -3 . 2,3
m
02 24 1 m, 2,002,023 e M35k T Do T (2,3)1m 2,3
03 24 1 4x2,9,2,,.2 y:,,z,m,aw',a;' 43350, 4,3,2 . —
04 24 1 2.1‘2,.‘21..2,,“' eyxir Zazae 24,3,2 -
2,450 2450 2,450 350 e
- 2 -
05 48 01-02 1, 24y0 200 2,0 [26] —.3)1m 1 (2,3)®1,
m
06 48 03-04 1, 210 2000 2,0 126] (4,3,2)®1, i —
4 _2
07 48 01-03 My am,am, mAs m st m 4 ;,3.; . 4,3,2
- - R 24 _ _
08 4 01-04 meast m 4yt m 4z Tyeer Vayars Lana =31 24,3,2
m
09 48 02-04 Moy am,, m 4% m 4t mas @,3,m)1m 24,3,2
10 48 02-03 m,4,,,m,4y,',m,4:,' Tpeeo Tapen aner (43,2)1m 4,3,2
4 _2 -
1 96 06-07-10 (~,3,—)¢m i 4,3,2)®1,
m m
[26]= 2xy —-z- |6y11y+r’2x)+¢+16) xy l'2xy x+t6y~:x) :'2 Xy+z— ,6;1-y+,
[m6]=m -z 16)+1y+l' >+z+|6) —zy-1r My z+16=+1) My, '6y —zy+t
XVI 26 Dii (xz) (y0) [ 1]
T 1 3 3 1 -1 o-3 =3 g-1 1 ~1 -1 41
01 8 1 14 8 Bs(."D'8 BSCD'sABsCD‘8ABSCD'4A84CD’4ABACD 8 l -
02 16 01 2 2+ 2x+yz l‘2x+ly+x zx-lx-v'zzyft‘zxy—l‘zyx‘*l'2L\A: 8842 i -
A=1+(V2/2)(x-2) B——y+(f/2)(x+z) C=1-(V2/2}(x-2) D=y+(V2/2)(x+2)
XX 27 Di particular monoclinic isorhombus (xy), (zt) [decagonal]
01 5 1 ShaSch:SabStp: SksStp:5Ap5CD 55 -
02 10 01 1, 103,51025,10,51053, 10451023, 10,3104, 1010 ] —
03 10 o 2ctymrr Zewdyr2iz-00 22xrz2iy— 0 5542 -
22x+21+xx-y‘22x+y+21x—x
04 20 02-03 b IS J T SR S 101042 i -
A=ly+z+1-P(x-2z) B=+yy+8(x+y+z) C=ly+z+i-a(x-2) D=-ylx+y+z)+8y
a=cosdw/S y=sindw/S B=cos2n/5 bS=sin2n/S
XX 28 Di isohexagons (xz), (yf) linic [dod 1]
01 12 11, le,,lch,12A,12CD,|2A,,|2CD‘12A912C,, 1212 i —
61:6,1.6761,.31.3,0.35) 30, 4,40, 45547
02 24 01 2x+zy Nzx zy+l‘21+lx y- |-2: zx+y+xv2x+ly+z‘2x-lyfx 121242 ‘ -
xeyxres 025 ,xn+n2xy+z.-2yzx+u2zz,+u2:2x -z
A=ly+1-(V3/2)x B=-1x-(V3/2y-z C=(V3/Qx+}iy+1 D=-ix+(/3/2)y-z
of the highest symmetry in the system (¢f. Table 1, ie*
first column).
2=f>=b
I. Names of the crystal systems b/2
In Table 1 we indicate between parentheses in the
xy=yz=xz=xt=yt=0.

fourth column the name given to each of the 23 crystal
families by Wondratschek, Billow & Neubiiser
(1971); for instance, family XV is called hexagonal
tetragonal.

For each family we propose a name much more
relevant to the geometry of the crystal cell. For in-
stance, let (x, y, z, t) denote a vector basis for the cell
of family XV; the matrix of the quadratic form is

Therefore we call it orthogonal square (xy) hexagon

(zt).

II. Geometric symbols and list of elements
for each PSG

Table 1 gives a list of all elements belonging to each
pomt group: rotations (2, 43, .. .), mirrors (m), inver-
sions (1), rotation-reflections (m3 6,...). In addi-
tion some subgroups are indicated in most cases (third
column) and in the case of a PSG™ the corresponding

* xy indicates the scalar product of the vectors x and y.
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PSG™ is indicated® (seventh column). The second
column gives the order of the PSG.

The study of these elements leads us to propose a
generalized geometric symbol suitable for the Her-
mann-Mauguin notation for the PSG in E>. It will be
noticed that the same symbol, except for additional
commas, is assigned to both a PSG in E> and the
polar group (Weigel & Veysseyre, 1982) it generates
in E°. These 32 polar groups in E* are identified by a
filled circle  in column 6 of Table 1; for instance 1V

2
04-02 is denoted by poe In the same column, PSGs

containing 1, (total homothetie —1 in E*) are identified
with the symbol |. These PSGs are the leaders of
Friedel-Laue classes.

For the symbols in E* commas are of major import-
ance; for instance, they make a clear distinction
between the cyclic group 26 of order 6 generated by
the double rotation 2, 6},(08-02) and the group 6,2,2
of order 12 (15-04) where double rotations 26 do not

27 .
exist, but where we find k? and = rotations that

do not exist in 26.

We made as much effort as possible to comply with
the conventions of Hermann-Mauguin notation in E*
to the full extent of its capabilities. For instance, in
our notation 46,m,1 (20-09), m and 1 stand beside
the 6: this means that there exist three mirror hyper-
planes (m) and three inversion axes (1). On the other
hand, in our notation 1,m,46 (20-10), since m and 1
stand beside the 4 then there exist two mirror hyper-
planes and two inversion axes.

Consider the group 20-02 (12 elements): it is gener-
ated by the rotation 4}, 6;,'. Therefore we denote it
by the symbol 46. Consider now the group 14-07 (12
elements): it is built up with the group 3 (or 14-01),
three rotations 2 and three inversions 1. Therefore we
denote it by the symbol 3,2,1.

At this point three new symbols need to be defined:

(a) Symbol 1. Some PSGs may be generated by
two rotations of equal or different angles in two
supplementary orthogonal planes of E*. Such is the
case for PSG 03-02 denoted by 212, or PSG 20-01
denoted by 4.13. The PSG 09-03 denoted by 216 is
generated by a rotation 2,, and a rotation 6,. Its 12
elements are then

T *1 *1 +1 +1
17 14’2xy, 6zr ’3z1 :2xy6zr ;2xy3zr ’ 2:r’

We note that 216 contains the cyclic group 26.

The second PSG of the system 06 is denoted by
(2,2,2) L m since the mirror is the hyperplane contain-
ing the three planes of rotation 2. This PSG contains

*Remember that the PSG™ related to a PSG is defined as its
subgroup containing all the rotations or PSOs™ (Weigel, Veysseyre,
Phan, Effantin & Billiet, 1984).
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eight elements:

l, 2xy’ 2yz’ 2xz’ ml’ lxyu lyzu lle
since the product of rotation 2,, and reflection m,
leads to inversion 1,,, around the inversion axis z.

(b) Symbol ®. This represents the direct product,
in its mathematical meaning of two subgroups (see
Appendix 1). For instance, PSG 21-02 denoted by
36®1, is the direct product of the two subgroups 36
and 1,.

(c) Symbol a.This indicates a semi-direct product
(see Appendix 1) in the case where this mathematical
symbol proves itself simpler and more concrete than
the pure geometrical symbol. For instance, PSG 19-05
is denoted by (4.14) A 2. In the same way PSG 30-11
is denoted by (6.16) A 4.

A full list of PSOs has been established for the
PSGs of systems 29, 30, 31, 32 and 33; owing to the
space required this is not reported in this paper.* For
this reason Table 2 only indicates the PSGs together
with their geometric symbols (column 4), some sub-
groups (column 3) and, in the case of a PSG™, the
corresponding PSG™ (column 6). PSGs containing 1,
are identified with the symbol | in the fifth column.

II1. Degenerate PSOs, PSGs and crystal systems
1. Degenerate PSOs

Definition (Weigel, Veysseyre, Phan, Effantin &
Billiet, 1984): A PSO is degenerate if its characteristic
polynomial has multiple roots. It is fully degenerate
either if it has only one root of order » in a space of
dimension n or if it has a pair, in the form [exp (if),
exp (—if)], of complex roots each of order m, in a
space of dimension 2m. In any other circumstances,
the PSO is only partly degenerate.

Examples
Fully degenerate PSOs Partly degenerate PSOs
E! —
2 1,2
E3 1,1 m,2
E* 1,1,,4'4',3'3! 6'6' 1,m2,3,4,6
B 1,15 4'4', 3'3!
E* 1,1,,4'4'4",3'3'3' 6'6'6" 33!

In E%, 4'4' and 4'47" are fully degenerate, 8'8* and
12'12% are not degenerate. If it was a PSO, 8'8”"
should be degenerate.

* A full list of PSOs for the PSGs of systems 29, 30, 31, 32 and
33 have been deposited with the British Library Document Supply
Centre as- Supplementary Publication No. SUP43869 (14 pp.).
Copies may be obtained through The Executive Secretary, Inter-
national Union of Crystallography, 5 Abbey Square, Chester
CH1 2HU, England.
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Table 2. Notations of the 66 crystallographic PSGs of the families XX to XXIII

This table contains three subtables corresponding to the families XX I, XX11, XXIII and to five systems; in this table we have suppressed
the column giving the elements of each PSG; the other columns are unchanged.

Class Order Subgroups WPV notation PSG*

XX1 29 Diisohexagons (xy), (21) orthogonal RR,-centred [di isohexagonal RR,-centred]

01 18 36, 3.3 —

02 36 01 (36,313)®1, i —

03 36 01 (36, 313)n2 —

04 36 (313)74 (313)a2

05 72 02-03 [(36,313)A2]®1, i —

06 72 04 [(3L3) 2 4)®1, i [(3L3)A2)®1,
07 72 03-04 A(m,3.3, m3a (36,313)22

08 72 03 4(313)4 (36,313)A2

09 144 05-06-07 [4(m, 313, m3A)®1, i [(36,313)A2]®1,

30 Di isohexagons (xv), (z1) orthogonal [di isohexagonal orthogonal}

01 12 66*, 44* i —

02 24 1212, 44" i —

03 24 1212, 36 i —

04 24 01 (66%,44%) 72 i —

05 36 01 1212,313 i —

06 48 02-03 36, 1212, 44* i —

07 72 1212,6L6 i —

08 72 1212,313,36 i —

09 72 05 1212,313,1212 i —

10 144 07-08-09 1212,616, 1212 i —

1 144 (616)24 i (616)A2
12 144 09 (m, 313, m)1212 i 1212,313, 1212
13 288 10-11-12 (m, m, 616, m, m)1212 \ 1212,616, 1212
XX1I 31 Particular rhombotope cos a = —;[icosahedral]

01 20 55,4 2,55,2
02 40 4,1010,4 i 2,1010,2
03 60 (2,3)55 —

04 120 03 (4,3, m)s5s (2,3)55
05 120 03 (4,3,1)55 (2,3)55
06 120 03 (2,3)1010 i —

07 240 04-05-06 (4,3, m)1010 i (2,3)1010

XXI111 32 Hypercubic

01 8 44* 44* 44* i —

02 16 88, 88 i —

03 16 o1 44*, 88, 44* \ -

04 16 01 44* 44, 44* \ _

05 24 01 44* 3 \ —

06 32 02-04 44*, 88, 88, 44* \ —

07 32 02 88, 44, 88 i -

08 32 02 88,414 i —

09 32 44%(414)44* i 2,44,2

10 32 04 44,44 i —

1 48 03-05 88,3 A —

12 64 06-07-08-10 88,414,838 i —

13 64 07 88,414, 88 i 88, 44, 88

14 64 10 44(m, 44, m)44 i 44,44

15 64 4(414)3 i (4L4) A2

16 96 10 (2,3)44 i —

17 128 12-13-14-15 (88,414,88)Am i 88,4.14,88

18 192 16 (%3) 44 i (2,3)44

19 192 16 (4,3, m)a4 i (2,3)44

20 192 11-12-16 (4,3,2)88 i —

21 384 20 (i, 3, 3) 88 A (4,3,2)88
m m
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Table 2 (cont.)

Class  Order Subgroups WPV notation PSG*
33 Hypercubic z-centred

1 24 1212,1212 i —

2 24 1212, 88 i —

3 24 66*,44%, 66* 1 —

4 48 01-02 (1212,88) A2 i —

5 48 03 1212, 44,1212 i -

6 48 03 88, 66* i —

7 72 01-03 1212, 3, 1212 1 —

8 96 01 1212,1212, 1212 i —

9 96 05-06 1212, 88, 66* i —
10 96 05 1212,4.14 i —
11 144 04-07 (2,3)88 i —
12 192 04-08 1212,4.14, 1212 i —
13 288 08 (2,3)1212 1 —
14 576 13 (4,3, m)1212 i (2,3)1212
15 576 13 (4,3,2)1212 i —

16 1152 14-15 (1,5,3)1212 i (4,3,2)1212

m m

2. Fully degenerate PSGs

Definition: A PSG is fully degenerate whenever any
of its PSOs is fully degenerate.

Examples
E': none E*: 1,1,, 44% 33* 66*
E%:1,2 E> 1,15
E:1,1 ES: 1, 1, 444*, 333*, 666*

In E* we mark with a star * the symbols of fully
degenerate PSGs (excluding 1 and 1,). It can be
noticed that 44*)2 is not fully degenerate since it
contains 2,, which is not a fully degenerate PSO in
E*. In such a case the star only applies to part of the
symbol.

3. Fully degenerate crystal systems

Definition: A crystal system is called degenerate if
any PSG belonging to it is fully degenerate.

Examples

E': none
E*: oblique (or parallelogram)
E*: triclinic
E*: hexaclinic: 1 and 1,
di diclinic squares: 44*
di diclinic hexagons: 33* and 66*
Property: A fully degenerate crystal system has no

edge or face of its Bravais-type cells whose direction
can be defined uniquely.

Nevertheless, by adding a convention we can define
a classical lattice. First, let us examine two examples
of fully degenerate crystal systems:

(a) Oblique in E2. There is an infinite number of
possibilities for determining the Bravais-type cells
associated with the parallelogram of the crystal lattice
shown in Fig. 1. But the parallelogram drawn with
the continuous line is the conventional Bravais-type
cell: as a matter of fact, among all possible
parallelograms it differs in that its angles are closest
to right angles.

(b) Crystal system 10: di diclinic squares in E*. The
matrix associated with the quadratic form of the
system 10 is

a 0 c d
0 a —-d c
c —d b 0
d c 0 b
One can note that
x’=y’=a xz=yt=c¢
Z2==b xt=—-yz=d
xy=1zt=0.
o . . . .

- — - —e o .

~
v
7
'
7
- o ° o

Fig. 1. An example of the Bravais type of cell associated with the
parallelogram of the crystal lattice.
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We call this system di diclinic squares (xy), (zt), since
the two planes xy and z¢ of the two squares are not
orthogonal and their four angles depend on two
angular parameters ¢ and d. More generally we can
find an infinite number of pairs of diclinic squares
for defining the Bravais cell of a crystal in E* and
belonging to this crystal system 10 (see Appendix 2).
The elements of the PSG 10-01, 44* are 1, 1, and two
rotations 4,,45, 4,475, with

y=[a(ab—c*—d*)] "} (—cx+dy+az),
8=[a(ab—c*—d*)] ¥ (—dx-cy+at),

1 1

the basis (xa~"/2, ya™"/?, v, 8) being orthonormal. We
cannot denote these elements by 4;,,4; since the
planes xy and zt are not orthogonal. Furthermore the
vectors vy and 8 are not elements of the crystal transla-
tion group and so we cannot choose them to define
the Bravais-type cells of this system 10.

On the contrary the system 16, called di monoclinic
squares, is neither a fully nor a partly degenerate
system and the squares belong to well defined planes
because the PSG 44* 2 of this system contains the
rotations 2,, and 2,, in the well defined planes xy
and zt. The matrix of the quadratic form is

a 0 ¢ O

0 a 0 ¢

¢c 0 b O

0 ¢c 0 b
in (x, y, z, t) and

a c¢

y O
a c

0 c b

in (x,z yt). In the basis (x, z,y,t) we have then

found two equal orthogonal parallelograms. So

another possible name for the crystal system 16 is di
iso orthogonal parallelograms (xz), (yt).

IV. Cyclic groups

Any PSG denoted by only one symbol is cyclic, except
44 (ie. 18-01). For instance 3 is the cyclic group of
order 6 generated by m,6!,.

Consider now the PSG 28-01 denoted by 1212. It
is a cyclic group of order 12 generated by g=
12445 12%p. Its successive powers are g°>=64z6cp,
g =44pdcp, 8'=34us3 s g =12%s12¢p, 8°=1,,
g =122312¢h,....

We notice that only powers of first, fifth, seventh
and eleventh order yield double rotations in two
perfectly characterized orthogonal planes. All re-
maining powers yield fully degenerate double rota-
tions. Considering the six PSOs g7, g°, g*, g%, g° and
g'°, one can easily show that the couples of planes
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(aB, cp) and (xz, y't')* consist of two particular
couples among the family of orthogonal couples of
planes adequate for these fully degenerate rotations.
Therefore it can be proved, for instance, that g2=
6456 = 6167

44 is the only non-cyclic group denoted by only
one symbol. Its only elements are: 443, 2,,, 2,,
1, and 1. It is the direct product of 44* and 2.

On the other hand multi-symbol PSGs may be
cyclic, such as, for instance, 213 and 4.13; these two
PSGs could be denoted by 23 and 43 (since 2 and 3
on the one hand, and 4 and 3 on the other hand are
prime) but such notation would be confusing with
PSG 23 in E°.

However, 46 and 416 are different: 46 is cyclic and
416 includes both 46 and the rotation 2,,.

Concluding remarks

Among the various examples of the crystallographic
PSGs of four-dimensional space, special consider-
ation should be given to the point groups for struc-
tured magnetic configurations on one hand and to
point groups for the incommensurate phases with one
only internal dimension on the other hand.

From this point of view, it is of major interest to
rely on unified geometric symbols taking into account
the 227 PSGs in E* and consistent with both
approaches, the former leading to magnetic symbols
(Bradley & Cracknell, 1972) and the latter leading to
the symbols for ‘incommensurate groups’ in E* (de
Wolff, Janssen & Janner, 1981); incommensurate
groups are groups of E* which describe incommen-
surate phases of physical space in their superspace E*.

The purpose of this article was to emphasize the
‘WPV’ symbols. In a further paper, we shall give the
correspondence between our symbols and the mag-
netic symbols on one hand and the symbols forincom-
mensurate phases on the other hand.

In addition we shall devote a further article to
extensively detailing the geometry of the
parallelotopes related to the 33 crystal system cell
types and of some polytopes inscribed in these types
of cells.

APPENDIX 1

The group G is said to be the direct product of the
two subgroups H and K and we write G= H® K if
the following three properties are true:

(1) For any element h, of H and for any element
k; of K we have h; x k; = k; = h; where * is the symbol
of the group operation.

(2) Any element of G can be written g=h; * k;
where h; belongs to H and k; to K.

*y'=2bx +3ay+4bz, 1'=2bx —ay—2at with a=x*=y?=27"="
P, b=xt=-yz
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(3) Only the element identity of G is common to
H and K.

Hence it follows that H and K are normal sub-
groups of G and the factorization of any element of
G is unique.

The group G is said to be the semi-direct product
of the two subgroups H and K and we write G = H »
K if the following three properties are verified:

(1) For any element k; of K we have

ki*HzH*ki.

(2), (3) The properties (2) and (3) above are
unchanged.

Hence it follows that H is a normal subgroup of
G and the factorization of any element of G is unique.
(Altmann, 1963a, b).

Remark: the direct product of two subgroups is
commutative but the semi-direct product is not com-
mutative. -

APPENDIX 2

Bravais cell types of degenerate crystal system 10

As mentioned in the text (§ III) it is possible to find
an infinite number of pairs of diclinic squares for
defining the Bravais cell of a crystal in E* belonging
to the crystal system 10.

A plane in E* is defined by two independent vectors
so that we can write

Vi=Ax+B,y+C,z+ Dyt
Vi=Aix+Biy+Ciz+ Dit
for the first plane and
Vo=A.x+B,y+ C,z+ D,t
Vi=Alx+ Byy+ Chz+ Djyt

for the second one.
From these relations and the results of § 111, we
obtain

V,.Vi=(Ax+B,y+ Cyz+ Dit)
x(Aix+Biy+Ciz+ Dit)
=(A|A{+B,B)a+(C,C;+D,D)b
+c(A{C,+B\D,+A,C!+ B,D})
+d(A\D,-B{C,+A,D,-B,C}),
Vi=(Ai+BYa+(Ci+DHd
+2[c(A,C,+B,D,)+d(A,D,- B,C,)],
ViZ2=(A2+B?)a+(C*+D?)d
+2[c(AICi+ B D})+d(A;D\- BiCy)],

and similar relations for V,. V4, V2 V2
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The condition V, V| =0 must be true for all possible
values of a, b, ¢ and d, and as a result

A,A1+B,B1=0
A{C,+B{D,+A,C{+B, D=0
C,Ci+D,D}=0
A}D,—B|C,+A,D|—B,C1=0,
from which it follows that
A} =k, B, Ci=k,D,
Bi=-k,A, Di=—-k,C,
where k; is a real non-zero number. Then the condi-
tion V3= V3 implies k2 = 1. The same relation holds,
of course, for the vectors V, and V3.

The pair of planes which contain squares is now
defined by the vectors

Vi=Ax+B,y+Cz+ Dyt

V; =k](B|x—A|y+D]Z~C1I)
and

V,=A,x+B,y+C,z+ D,t

Vézkz(Bzx_Azy'i'Dzz"‘Cz’)

where ki=1 and ki=1.
We next determine the numbers k, and k,. After
an easy calculation, we obtain

ViVi=k ik, Vi V,
k,ViV,=—k, V, V5.
The properties V; V,= V{V5and V,V;=-V |V, of

the matrix associated with the quadratic form of the
system 10 require the conditions

klk2=1 ky=ky;

that is, k,=k,=1or k;,=k,=—1.

As pointed out above, we conclude that there exists
an infinite number of pairs of diclinic squares belong-
ing to the crystal system 10 which are in the planes

Vi=Ax+B,y+C,z+ Dt
Vi=k(Bix—A,y+D,z—Ct)
V,=A,x+B,y+ Cyz+ D,t
Vi=k(B,x—A,y+D,z—C,t),

with the condition k=1 or k=—1.

If we choose all the coefficients A, B, C, D as
integers the vectors V,, Vi, V, and V} belong to the
space group of system 10, and so define the infinite
number of possible Bravais cells of this degenerate
crystal system.

and
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Abstract

An improvement of the classical theory of extinction
in mosaic crystals is made by starting from the energy
transfer equations valid for a general-type crystal
according to Zachariasen’s [Acta Cryst. (1967), 23,
558-564] classification. Within the assumption that
only the integrated intensity of the diffraction peak
is needed, the equations are first simplified and then
solved. The result obtained for the extinction factor
is similar to that of Becker & Coppens [Acta Cryst.
(1974), A30, 129-147], but two new parameters
appear if the crystal is not of type I. One of them,
determining the peculiarity of the transfer equations,
gives differences in the extinction factor not greater
than 8%. The other, representing the ratio of the
kinematical cross-section strengths along the diffrac-
ted and incident beams, gives differences up to 50%.
For crystals of ellipsoidal shape, empirical formulae
appropriate for structure refinement programs are
proposed.

1. Introduction

In this paper we re-analyse the problem of secondary
extinction in the framework of classical transfer
theory. The transfer equations for secondary extinc-
tion in finite crystals were first written by Hamilton
(1957) and were based on the mosaic model of Darwin
(1922) for the ideal imperfect crystal. Zachariasen
(1967) has used similar equations to describe extinc-
tion in real crystals, so henceforth we will call these
equations Hamilton-Zachariasen (HZ) equations.

* Permanent address: Institute for Nuclear Power Reactors, PO
Box 78, Pitesti, Romania.

0108-7673/87/030304-13301.50

Zachariasen stated that any real crystal is situated
between two limiting types, distinguished by the
nature of the peak width: type I if the width is given
exclusively by the mosaic and type II if the width is
given by the crystallite size only. Correspondingly,
the secondary extinction follows the same
classification. So far as primary extinction in small
mosaic blocks is concerned, a description by the same
transfer equations has been considered good enough
under the assumption that this extinction is weak.
The unified theory of Zachariasen has been very much
criticized both for some mathematical errors and for
its physical basis. On the same basis, Becker & Cop-
pens (1974a) (BC) have re-analysed the HZ
equations. The solution which they provided has
become very popular both for its convenient param-
etrization for least-squares-refinement programs and
for its resistance to numerous experimental tests (see
e.g. Hutton, Nelmes & Scheel, 1981).

The limitations on the classical theory of extinction
in real crystals were clarified by the new dynamical
statistical theory of Kato (19764, b, 1979, 1980). Start-
ing from the dynamical equations for a distorted
crystal and assuming a homogeneous and isotropic
distribution of the defects, Kato derived a system of
energy transfer equations valid for extinction only if
the coherence distance 7. is smaller than the extinction
distance A =(nA|F|)"!. Here A is the wavelength, F
the structure factor and n the density of unit cells.
The energy transfer equations of Kato are similar to
but not identical with the HZ equations. The differen-
ces discussed in detail by Kato (19765, 1979) are in
the form and physical interpretation of the coupling
constants. Analysing the equivalence between the two
kinds of energy transfer equations, Becker (1977)
concludes that the range of validity found by Kato
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